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A series of structurally related racemic pentafluorophenyl active esters were resolved using an equimolar
amount of (S)-4-phenyloxazolidin-2-one. The levels of diastereocontrol were found to be excellent (80-
96% de) at �40% conversion.
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The resolution and synthesis of pharmaceutically important 2-
aryl- and 2-phenylpropanoic acids are well documented.1 Since
2000, we have been interested in the resolution2 of pentafluor-
ophenyl active esters derived from 2-aryl- and 2-phenylpropanoic
acids, such as (rac)-2, using Evans’ 4-phenyloxazolidin-2-one (R)-1
(Scheme 1).3 For example, treatment of oxazolidin-2-one (R)-1
with n-BuLi at�78 �C, followed by the addition of an excess of pen-
tafluorophenyl 2-phenylpropanoate (rac)-2 in THF, gave after 2 h,
the corresponding oxazolidin-2-one adducts (S,R)-syn- and (R,R)-
anti-3 in 52% and 4% yields, respectively, in a diastereoisomeric ra-
tio of 92:8 (84% de) (Scheme 1).4 However, using one equivalent or
less of this (rac)-2, resulted in lower levels of diastereocontrol (40%
de) due to competitive oxazolidin-2-one in addition to the less
reactive (R)-enantiomer of 2 to give the minor diastereoisomer
(R,R)-anti-3 (Scheme 1).4

We now report the scope and limitation of this methodology for
the efficient resolution of pentafluorophenyl 2-aryl- and 2-phenyl-
propanoates, such as (rac)-2, using a variety of structurally related
oxazolidin-2-ones as the resolving agent.

We first investigated the time dependence for an efficient reso-
lution of pentafluorophenyl 2-phenylpropanoate (rac)-2 using an
equimolar amount of 4-phenyloxazolidin-2-one (S)-1 (Scheme 2).
Treatment of oxazolidin-2-one (S)-1 with n-BuLi in THF at
�78 �C, followed by addition of the active ester, (rac)-2, and stir-
ring the resulting solution from 1 min to 2 h, gave the correspond-
ing oxazolidin-2-one (R,S)-syn-35 in moderate yield (30–39%) with
poor to excellent levels of diastereocontrol (40–94% de) (Scheme
2).

The remaining active ester 2 was isolated by column chroma-
tography in good yield, and was found to have (S)-configuration
(Scheme 2).6,7 The optimum reaction time was found to be 5 min,
leading to the formation of oxazolidin-2-one (R,S)-syn-3 in 39%
yield (out of a possible 50% yield) with 94% de (Scheme 2). With
this information at hand, we next investigated the relative stoichi-
ometry of this active ester (rac)-2, from 0.25 to 2 equiv, in an
ll rights reserved.

: +44 1482 466410.
attempt to improve the levels of diastereocontrol. For a short reac-
tion time (5 min), the relative diastereoselectivity remained con-
stant (94% de) from 2 to 0.25 equiv; however, the yields were
reduced from 57% to 3% (Scheme 3).8 For longer reaction times
(2 h), the diastereoselectivity was reduced by unavoidable addition
of (S)-1 to the less reactive (S)-enantiomer of 2, to give the minor
diastereoisomeric oxazolidin-2-one (S,S)-anti-3 (Scheme 1).

We next turned our attention to study a series of structurally re-
lated active esters (rac)-2, (rac)-4, (rac)-6, (rac)-8, (rac)-10, (rac)-12
and (rac)-14 using our optimum reaction conditions [oxazolidin-2-
one (S)-1, �78 �C, 5 min] (Scheme 4). Treatment of the oxazolidin-
2-one (S)-1 in THF at �78 �C, with n-BuLi, followed by the addition
of active esters (rac)-4, (rac)-8, (rac)-10, (rac)-12 and (rac)-14 in
THF, gave the corresponding oxazolidin-2-one adducts (R,S)-syn-5,
(R,S)-syn-9, (R,S)-syn-11, (R,S)-syn-13 and (R,S)-syn-15 in good yields
(36–54%) with good to excellent levels of diastereoisomeric excesses
(52–96% de) (Scheme 4, entries 2 and 4–7).9,10 From this study, there
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Scheme 2. Change in diastereoisomeric excess versus reaction time.

http://dx.doi.org/10.1016/j.tetlet.2010.08.109
mailto:j.eames@hull.ac.uk
http://dx.doi.org/10.1016/j.tetlet.2010.08.109
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


OHN

O

Ph

1. n-BuLi (1.1 equiv.)
    THF, -78 oC

Ar

R
OC6F5

O2.

(1 equiv.)
(S)-1 

(1 equiv.)

ON

O

Ph

(R,S)-syn-

O
Ar

R

Ph CO2C6F5

Et

Ph CO2C6F5

i-Pr

ON

O

Ph

O
Ph

Me

Ph CO2C6F5

Me

ON

O

Ph

O
Ph

Et

ON

O

Ph

O
Ph

i-Pr

(rac)-2 (R,S)-syn-3

(rac)-4 (R,S)-syn-5

(rac)-6 (R,S)-syn-7

Entry Active ester Product

1

2

3

d.e. Yield

94% d.e.

96% d.e.

39%

43%

0%

(rac)-2, 5 min

Tol CO2C6F5

Me
ON

O

Ph

O
Tol

Me

(rac)-8 (R,S)-syn-9

4 84% d.e. 36%

4-i-BuC6H4 CO2C6F5

Me
ON

O

Ph

O
4-i-BuC6H4

Me

(rac)-10 (R,S)-syn-11

5 82% d.e. 44%

4-ClC6H4 CO2C6F5

Me
ON

O

Ph

O
4-ClC6H4

Me

(rac)-12 (R,S)-syn-13

6 52% d.e. 54%

Ar CO2C6F5

Me
ON

O

Ph

O
Ar

Me

(rac)-14 (R,S)-syn-15

7 80% d.e. 43%

Ar = 6-methoxynaphthyl

Scheme 4. Resolution of active esters (rac)-2, 4, 8, 10, 12 and 14 using oxazolidin-
2-one (S)-1.

OHN

O

R

1. n-BuLi (1.1 equiv.)
    THF, -78 oC

Ph

Me
OC6F5

O2.

(1 equiv.)
(S)-

(1 equiv.)

ON

O

R

(R,S)-syn-

O
Ph

Me

ON

O

Ph

O
Ph

Me

(S)-1 (R,S)-syn-3

Entry Oxazolidin-2-one Product

1

d.e. Yield

94% d.e. 39%5 min

2 h

OHN

O

Ph
40% d.e. 34%2

ON

O

Ph

O
Ph

Me

(S)-16 (R,S)-syn-17

3 90% d.e. 12%5 min

2 h
OHN

O

Ph
82% d.e. 30%4

ON

O

4-ROC6H4

O
Ph

Me

(S,R)-syn-19

5 84% d.e. 36%5 min

2 h
OHN

O

4-ROC6H4

38% d.e. 53%6

Ph
Ph Ph

Ph

ON

O

Ph

O
Ph

Me

(R,S)-20 (S,R,S)-syn-21

7 90% d.e. 43%5 min

2 h

OHN

O

Ph
58% d.e. 54%8

Ph Ph

(R)-18

, t

t

(rac)-2

R = TBDMS R = TBDMS

Scheme 5. Resolution of active ester (rac)-2 using oxazolidin-2-ones (S)-1, (S)-16,
(R)-18 and (R,S)-20.

OHN

O

Ph

ON

O

Ph

Ph

O

H Me

(R,S)-syn-3

syn-3:anti-3 97:3 (57%) 97:3 (39%)8

ON

O

Ph

Ph

O

Me H

(S,S)-anti-3

(rac)-2 n equiv.

(S)-1

97:3 (7%) 97:3 (3%)

2 equiv. 1 equiv. 0.5 equiv. 0.25 equiv.

2.  (rac)-2
     (n equiv.)

1. n-BuLi, 
    THF, -78 oC

5 min

Scheme 3. Resolution of active ester (rac)-2 using oxazolidin-2-one (S)-1.

N. Al Shaye, J. Eames / Tetrahedron Letters 51 (2010) 5892–5895 5893
appears to be a steric threshold as the most sterically demanding ac-
tive ester, (rac)-6, was unreactive under these reaction conditions
(�78 �C, 5 min). By comparison, the less sterically demanding penta-
fluorophenyl 2-phenylbutanoate (rac)-4 gave the corresponding
oxazolidin-2-one (R,S)-syn-5 in 43% yield with the highest level of
diastereocontrol (96% de) (Scheme 4, entry 2). The relatively and less
sterically demanding pentafluorophenyl 2-phenylpropanoate (rac)-
2, gave the corresponding oxazolidin-2-one (R,S)-syn-3 in 39% yield
with marginally lower levels of diastereocontrol (94% de). The
remaining pentafluorophenyl propanoates (rac)-8, (rac)-10 and
(rac)-14 were comparable to the parent pentafluorophenyl 2-phe-
nylpropanoate (rac)-2 (Scheme 4, entries 4, 5 and 7). However, the
active ester, pentafluorophenyl 4-chlorophenyl propanoate (rac)-
12, was notably less stereoselective presumably due to the elec-
tron-withdrawing 4-chlorophenyl group (Scheme 4, entry 6).11

The unreacted active esters, (S)-4, (S)-8, (S)-10, (S)-12 and (S)-14,
were recovered in good yields (20–43%) with moderate to good lev-
els of enantiomeric excesses (46–80% ee) (Scheme 4).9

In an attempt to increase the levels of diastereoisomeric control,
we next chose to probe the use of other structurally related 4-aryl/
phenyl oxazolidin-2-ones, such as (S)-16, (R)-18 and (R,S)-20
(Scheme 5).12 Treatment of these 4-aryl/phenyl oxazolidin-2-ones
(S)-16, (R)-18 and (R,S)-20 in THF at �78 �C, with n-BuLi, followed
by the addition of our standard active ester, pentafluorophenyl 2-
phenylpropanoate (rac)-2, gave after 5 min the corresponding
oxazolidin-2-ones (R,S)-syn-17, (S,R)-syn-19 and (S,R,S)-syn-21 in
poor to good yields (12–43%), but with excellent levels of diaste-
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reocontrol (80–90% de) (Scheme 5, entries 3, 5 and 7).12 Under
these reaction conditions (�78 �C, 5 min), the oxazolidin-2-one
(R,S)-20 gave the optimum levels of yield and diastereoselectivity
(43%; 90% de) (Scheme 5). As expected from our previous study,
a longer reaction time (2 h), gave lower levels of diastereocontrol
(Scheme 5, entries 2, 4, 6 and 8). However, for less reactive oxazoli-
din-2-ones, such as (S)-16, the levels of diastereocontrol still
remained high (82% de) primarily due to their lower percentage
conversion (Scheme 5, entries 3 vs 4).
With this information at hand, we next investigated the struc-
tural nature of the oxazolidin-2-one by probing the resolution of
(rac)-2 using a series of 4-alkylsubstituted oxazolidin-2-ones, (S)-
22, (R,S)-24, (S)-26, (S)-28, (S)-30, (S)-32 and (S)-34 (Scheme 6).13

Under our standard reaction conditions (�78 �C, 5 min), the oxaz-
olidin-2-ones, (S)-22 and (S)-30, gave the corresponding oxazoli-
din-2-ones (S,S)-syn-23 and (R,S)-syn-31 in moderate yields, 27%
and 26%, respectively, with high levels of diastereocontrol, 56%
de and 72% de, respectively (Scheme 6, entries 1 and 9). From this
study, it appears that the less sterically demanding oxazolidin-2-
ones, (R,S)-24 and (S)-26, gave the corresponding oxazolidin-2-
ones (S,R,S)-syn-25 and (R,S)-syn-27 in good yields, 54% and 65%,
respectively, but with low levels of diastereocontrol, 28% de and
14% de, respectively (Scheme 6, entries 3 and 5). By comparison,
the more sterically demanding oxazolidin-2-ones (S)-28, (S)-32
and (S)-34 were unreactive under these reaction conditions
(�78 �C, 5 min) (Scheme 6, entries 7, 11 and 13).

Increasing the reaction time, from 5 min to 2 h, unsurprisingly
lowered the diastereoselectivity for the oxazolidin-2-ones (S)-22,
(R,S)-24, (S)-26 and (S)-30 (Scheme 6, entries: 2, 4, 6 and 10). How-
ever, for the more sterically demanding oxazolidin-2-ones (S)-28
and (S)-32, the relative diastereoselection was reversed, favouring
formation of the anti-diastereoisomeric adducts14 (S,S)-anti-29 and
(S,S)-anti-33 in moderate yields, 26% and 22%, respectively (Scheme
6, entries 8 and 12). This is somewhat surprising as their less steri-
cally demanding counterparts, oxazolidin-2-ones (S)-26 and (S)-
30, preferred formation of the complementary syn-adducts, (R,S)-
syn-27 and (R,S)-syn-31 (Scheme 6, entries 5–12). For the remaining
sterically demanding oxazolidin-2-one, 4-tert-butyl-oxazolidin-2-
one (S)-34, this favoured formation of the syn-diastereoisomer
(R,S)-syn-35 in a low (14%) yield with moderate diastereoselectivity
(32% de) (Scheme 6, entry 14). Interestingly, Evans-type oxazolidin-
2-ones (S)-1, (S)-22, (R,S)-24, (S)-26, (S)-30 and (S)-34 preferred for-
mation of the syn-diastereoisomeric adducts (R,S)-3, (S,S)-23, (S,R,S)-
25, (R,S)-27, (R,S)-31 and (R,S)-35, whereas, Seebach-type oxazoli-
din-2-ones, (S)-28 and (S)-32, preferred formation of the comple-
mentary anti-diastereoisomeric adduct (S,S)-anti-29 and (S,S)-anti-
33 (Schemes 5 and 6). The only exception being the less sterically
demanding 4,5,5-triphenyloxazolidin-2-one (S)-16, which favoured
formation of the corresponding syn-adduct (R,S)-17 (Scheme 5, en-
tries 3 and 4). This addition process also occurred in a shorter reac-
tion time (5 min), whereas, for the more steric demanding Seebach
oxazolidin-2-ones, (S)-28 and (S)-32, no addition occurred (Scheme
5, entry 3 vs Scheme 6, entries 7 and 11).

Attempts at forming these syn-oxazolidin-2-one adducts, such as
(R,S)-syn-33, through stereospecific addition of oxazolidin-2-one
(S)-32 to pentafluorophenyl 2-phenylpropanoate (R)-2, were unsuc-
cessful. Addition of a solution of pentafluorophenyl 2-phenylpro-
panoate (R)-2 in THF, to a stirred solution of lithiated oxazolidin-2-
one (S)-32 in THF at�78 �C, gave after 2 h, an inseparable diastereo-
isomeric mixture of oxazolidin-2-ones (S,S)-anti- and (R,S)-syn-33
(ratio 66:34) in 20% yield. By comparison, stereospecific formation
of the complementary oxazolidin-2-one (S,S)-anti-33 [by addition
of oxazolidin-2-one (S)-32 to pentafluorophenyl 2-phenylpropano-
ate (S)-2] was more diastereoselective, leading to the required oxaz-
olidin-2-one (S,S)-anti-33 in 35% yield with 82% de. From this study,
it appears that addition of the sterically demanding oxazolidin-2-
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one 32 to the active ester 2 is not stereospecific and probably pro-
ceeds via a deprotonation/deprotonation ketene mechanism.

In an attempt to probe the complementarity of this resolution, we
next investigated the resolution of 4-phenyl-oxazolidin-2-ones
(rac)-1 using an enantiomerically pure active ester, pentafluorophe-
nyl 2-phenylbutanoate (R)-4 (Scheme 7). Treatment of the oxazoli-
din-2-one (rac)-1 in THF at �78 �C, with n-BuLi, followed by the
addition of pentafluorophenyl 2-phenylbutanoate (R)-4 in THF,
and stirring the resulting solution for 5 min, gave the oxazolidin-2-
one (S,S)-syn-5 in 22% yield with 92% de (Scheme 7). The remaining
oxazolidin-2-one (R)-1 was recovered with 26% ee (Scheme 7).

Simple hydrolysis of these enantiomerically pure oxazolidin-2-
one adducts, such as (S,R,S)-syn-21 and (S,R)-syn-5, using a combina-
tion of LiOH and H2O2 in THF/H2O (3:1), gives access to the resolved
2-phenylpropanoic acid (S)-36 and 2-phenylbutanoic acid (S)-37 in
good yields with excellent enantiomeric excesses (Scheme 8).6

In conclusion, we have reported the kinetic resolution of a series
of pentafluorophenyl active esters, such as (rac)-2, using 4-aryl/
phenyl-substituted oxazolidin-2-ones, such as (R,S)-20, to give
the corresponding oxazolidin-2-one adduct (S,R,S)-syn-21 in good
yield (43%) with high levels of diastereocontrol (90% de). The levels
of diastereocontrol were found to be highly dependent on the
structural nature of the 4-substituted oxazolidin-2-one. Those
oxazolidin-2-ones that contained a 4-aryl/phenyl-substituted ring
gave higher levels of diastereoselectivity than those contained a
simple 4-alkyl substituent. Increasing the steric demand of these
oxazolidin-2-ones, by using 5,5-diphenyl substitution15 [in the
case of oxazolidin-2-ones (S)-28 and (S)-32] increased the likeli-
hood of non-stereospecific addition pathways. The recovered ac-
tive esters were isolated in good yield (9–90%) and were found
to be enantiomerically enriched with up to 80% ee.
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enantiomeric excess was confirmed by specific rotation and self-coupling; see
Ref. 6.

8. For 1 equiv—the active ester (S)-2 was recovered in 35% yield with 44% ee. The
enantiomeric excess was confirmed by specific rotation and self-coupling; see
Ref. 6.

9. The following enantiomerically enriched active esters were isolated; Scheme 4,
entry 1—(S)-2; 35%; 46% ee; entry 2—(S)-4; 43%; 80% ee; entry 3—(rac)-6; 90%;
entry 4—(S)-8; 42%; 55% ee; entry 5—(S)-10; 42%; 74% ee; entry 6—(S)-12; 20%;
65% ee; entry 7—(S)-14; 37%; 63% ee.

10. The% ee of the recovered active esters were comparable (within experimental
error) to the theoretical value based on the %yield (±10%) and %de of the
oxazolidin-2-one adduct.

11. Addition of the lithiated oxazolidin-2-one (S)-1 to the active ester (rac)-12 is
stereospecific as addition to the enantiomerically pure active ester (R)-12 gave
exclusively the major diastereoisomeric oxazolidin-2-one (R,S)-syn-13 in 54%
yield with >98% de.

12. The enantiomerically enriched active ester 2 was isolated; Scheme 5, entry
1—35%; (S)-54% ee; entry 2—14%; (S)-23% ee; entry 3—59%; (S)-17% ee; entry 4—
32%; (S)-53% ee; entry 5—24%; (R)-56% ee; entry 6—15%; (R)-54% ee; entry
7—37%; (R)-66% ee; entry 8—17%; (R)-64% ee.

13. The enantiomerically enriched active ester 2 was isolated; Scheme 6, entry
1—25%; (R)-32% ee; entry 2—17%; (R)-68% ee; entry 3—32%; (R)-37% ee; entry
4—15%; (R)-19% ee; entry 5—14%; (S)-44% ee; 4%; (S)-4% ee; entry 8—31%; (R)-
36% ee; entry 9—37%; (S)-36% ee; entry 10—9%; (S)-16% ee; entry 12—19%; (R)-
33% ee; entry 14—50%; 6% ee.

14. The stereochemistry of the Seebach adducts, (R,S)-syn-17, (S,S)-anti-29 and
(S,S)-anti-33, were confirmed by stereospecific synthesis.

15. (a) Bull, S. D.; Davies, S. G.; Garner, A. C.; Kruchinin, D.; Key, M. S.; Roberts, P.
M.; Savory, A. D.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2006, 4, 2945;
(b) Gaul, C.; Schweizer, B. W.; Seiler, P.; Seebach, D. Helv. Chim. Acta 2002, 85,
1546; (c) Hintermann, T.; Seebach, D. Helv. Chim. Acta 1998, 81, 2093.
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